

GCSE Computer Science Checklist

Unit 3 - Software Development
(Exam Condition Controlled Assessment: 20 hour - 80 Marks - 20% of Qualification)

Topic Sub-Topic Explanation I can statement Studied R A G

S
c

o
p

e
 o

f
th

e
 P

ro
b

le
m

Analysis
Use a systematic approach to problem
solving including the use of
decomposition and abstraction.

I can break a complex problem into smaller
component parts.

I can remove unnecessary detail from a given
scenario.

I can simplify a given scenario.

Data
Requirements

Identify the data requirements to create
an effective solution.

I can list the fields that are needed to store
data a solution requires.

I can identify appropriate data types for fields

Process
Requirements

Identify the processing to be carried out
by the solution.

I can explain the processes a solution will
need to perform

Input and Output
Requirements

Identify the required inputs and outputs
required for the solution.

I can identify the inputs required to create a
solution to a given problem

I can identify the outputs required to create a
solution to a given problem

Objectives

Produce a detailed set of objectives, that
are measurable, that define clearly the
tasks required to create an effective and
fully functional solution.

I can clearly explain appropriate measureable
objectives for a solution based upon the tasks
an effective, fully functional solution would
perform.

D
e

s
ig

n

Design

Produced a comprehensive design that
would allow a competent third party to
create a solution that covers all stated
objectives.

I can produce comprehensive designs for all
parts of the solution that tie to the objectives
for the project.

Input and
Outputs Facility's

Identified fully and described in detail the
input and output facilities to be provided
by the user interface which will be fit for
purpose.

I can fully identify and describe the input
facilities to be used in the solution.

I can explain how input facilities will be fit for
purpose.

I can fully identify and describe the output
facilities to be used in the solution.

I can explain how output facilities will be fit for
purpose.

Data Structures
Described all data structures required to
create an effective solution, using correct
technical terminology.

I can produce data structures based off the
data requirements for the solution.

I can identify appropriate data types for data
within a data structure.

Validation
Described fully the validation routines
required to ensure that only appropriate
data can be entered into the solution.

I can identify validation routines that will be
needed for each input within the system.

Authentication
Considered fully the need for
authentication routines.

I can identify the authentication routines that
will be included within the system.

Processing Stage

Described all data handling and
processing routines for an effective
solution as algorithms, using a standard
convention such as pseudo code or
flowcharts

I can produce clear and well-structured
pseudo code or flowcharts to outline all
procedures that will take place within the final
solution.

D
e

v
e

lo
p

m
e

n
t

Creation

Produce windows based forms utilising
integrated objects.

I can create and save a new Visual Basic .Net
(VB.Net) windows based application using
Visual Studio.

I can add new windows forms into my
application.

I can add Labels onto my windows forms

I can add TextBoxes onto my windows forms

I can add Buttons onto my windows forms

I can add ListBoxes onto my windows forms

I can add CheckBoxes onto my windows
forms

I can add ComboBoxes onto my windows
forms

I can add DataTimePickers onto my windows
forms

I can add DataGridViews onto my windows
forms

I can format all object to set; font size, type
face, foreground and background colour.

Produce modules to reduce code
reputation.

I can add new modules into my application

Name forms, modules and objects
appropriately.

I can name all objects appropriately using a
suitable naming system.

I can name all windows forms appropriately
using suitable naming system.

I can name all modules appropriately using
suitable naming system.

Produce efficient code

I can create local variables.

I can create global variables.

I can write code to receive information input
by a user.

I can write code to compare data and/or
variables.

I can write code to add, subtract, multiply and
divide numeric values.

I can write code to open another form.

I can write code to hide a form.

I can write code to close a form.

I can write conditional statements (IF
Statements).

I can write for loops.

I can write until/while loops.

I can code a data structure.

I can code public functions.

I can code public subroutines

I can write try, catch exceptions to catch file
errors.

I can code a FilePut to store/overwrite
information into a dat file.

I can code a FileGet to retrieve information
from a dat file.

I can code a hashing algorithm to calculate
record positions.

I can code a type check.

I can code a range check.

I can code a length check.

I can code a format check.

I can code a presence check.

Produce well-structured, self-
documenting code.

I can structure my code appropriately using
indents and spacing.

I can use self-documenting names for
variables, subroutines and functions.

Debugging and error finding

I can execute my code

I can identify errors that stop my code from
compiling and overcome the issues.

I can use breakpoints within my code to help
with error checking and diagnostic.

I can use step through to run each line of
code and help with error checking and
diagnostic.

I can use variable watch to view the data a
variable contains and help with error checking
and diagnostic.

R
e

fi
n
e

m
e

n
t
L

o
g

Approach to
Software

Development

Demonstrated a structured approach to
developing the solution.

I can approach the development of my
solution in a structured well organised manor.

Ordered and
Logical Approach

Carried out activities in an appropriate
order.

I can carry out the project in the correct order
without moving back and forth between
sections.

Development
Progress

Evaluated effectively the progress made
in each session.

I can document the progress that I make in
each session.

Development
Issues

Provided a full description of any
problems encountered with good use of
technical terminology

I can document the problems I encounter
using appropriate technical vocabulary.

Design
Alterations

Justified any changes that have been
made to the original design
demonstrating an informed
understanding of the need for change.

I can identify issues during development that
will require me to alter my original designs.

I can alter my original designs to overcome
development issues.

Development
Planning

Produced logical and prioritised actions
for subsequent sessions.

I can plan tasks that need completing within
my next sessions based off what I complete in
each session.

E
ff

e
c
ti

v
e
n

e
s
s

Functionality

The solution achieves all the
requirements of the given scenario.

I can explain how my solution archives all the
requirements of the scenario.

The solution is efficient in use of
resources.

I can explain how my solution is efficient.

User Interface
The solution is usable with a user
interface that is intuitive and fit for

audience and purpose.

I can explain how my user interface is
intuitive.

I can explain how my user interface is fit for
the audience and purpose.

Modular
The solution is well-structured and

modular in nature.

I can demonstrate my code is well-structured.

I can demonstrate my code is modular in
nature.

Authentication
The solution is secure with effective
authentication routines.

I can demonstrate my solution can only be
accessed by valid users.

Reliability and
Robustness

The solution is reliable and robust.
I can explain how my solution is reliable and
robust.

T
e
c

h
n

ic
a

l
Q

u
a
li
ty

 Source Code

The code for the solution is self-
documenting, well-structured and

modular in nature.

I can write a solution with self-documenting
code.

I can write a solution that is well-structured

I can write a solution that is modular in nature.

The code uses a consistent programming
style throughout, including indentation

and the use of white space around
operators and keywords.

I can write code that is correctly indented.

I can write code that is laid out with white
space to make it easy to read.

I can write code using key words and
operators.

The code has made full use of
meaningful identifiers and appropriate

use of constants.

I can write code and use meaningful
identifiers throughout.

I can write code which uses appropriate
constants.

Subroutines have been created.
I can create my own subroutines and
functions.

The solution has a well-defined interface. I can create a well-defined interface.

Variables
The code made effective use of local

variables and minimised the use of global
variables.

I can write code that uses mainly local
variables.

I can write code that avoids the use of global
variables.

Validation
Routines

The solution has effective validation
routines and created routines for

exception handling.

I can write code that uses a range of
validation techniques.

I can write code that allows for exception
handling.

Annotated Code
The solution includes informed
annotation of the code throughout.

I can fully annotate my code.
T

e
s

t
S

tr
a

te
g

y

Provide a Test
strategy

Test strategy considers fully the nature of
the solution and is well-structured.

I can produce a well-structured test strategy
that is appropriate for the solution.

Provided an informed description of the
scope and range of the chosen test
strategy.

I can fully explain the scope of the test
strategy.

Fully explained the purpose of unit,
integration and functional testing, taking
into account the nature of the solution

I can fully explain the purpose of each test
and how it will be used to test the system is
working correctly.

Test Hypotheses

Considered in detail how the outcomes of
the testing process will be used to

influence any further development of the
solution.

I can explain the expected results for each
test.

I can explain what further development may
be required within each area of the testing.

Produce detailed
Plan

Produced a comprehensive plan for
carrying out unit, integration and

functional testing to cover all
requirements of the given scenario.

I can create a comprehensive test plan that
will fully test the solution.

I can create a test plan that will test the
solution meets the requirements of the
scenario.

Plan Test Data
Identified comprehensive test data to fully
test the solution.

I can identify typical, extreme and erroneous
test data.

T
e
s

ti
n

g

Complete a full
range of tests

Followed the test plan in a logical and
systematic manner.

I can follow my test plan and complete all
tests in order.

Testing made effective use of typical,
extreme and erroneous data.

I can make use of typical, extreme and
erroneous data within my testing.

Present Testing
Outcomes

Presented all testing outcomes with
detailed and informed commentaries.

I can evidence all tests carried out.

I can explain each test in detail alongside the
outcome.

Consider the outcomes of testing and
identify areas of further development

I can identify areas of further development
based upon the outcomes of my tests.

F
u

rt
h

e
r

D
e

v
e

lo
p

m
e

n

t

Evaluate the
Solution Based

on the Objectives

Considered fully the outcomes of the
testing process in terms of the solution
objectives.

I can identify which objectives the solution
has met and not met.

Features
Fully described the successful features

and areas for further development
I can fully describe the successful features of
the solution.

I can fully describe the features that need
further development.

Suggest
Extensions to the

Application

Proposed detailed and comprehensive
suggestions for specific extensions to the
solution.

I can explain in detail extensions that could be
added to the solution with further
development.

